Buy the best software: Lottery, Powerball, Mega Millions, gambling roulette, blackjack, sports.

Calculate Blackjack Probability, Odds: Natural 21, Insurance, Double-Down Hands, Pairs

By Ion Saliu, Founder of Blackjack Mathematics

Run the best software to calculate probability odds blackjack or natural 21.

Figure out the odds to get a natural 21, house edge for the insurance bet at blackjack.

I. Probability, Odds for a Blackjack or Natural 21
II. House Edge on Insurance Bet at Blackjack
III. Calculate Double-Down Hands
IV. Calculate Blackjack Pairs: Strict or Mixed Ten-Cards
V. Free Blackjack Resources, Basic Strategy, Casino Gambling Systems

The blackjack natural 21 occurs about 5% of the time, insurance can be +8% at times.

1.1. Calculate Probability (Odds) for a Blackjack or Natural 21

I have seen lots of search strings in the statistics of my Web site related to the probability to get a blackjack (natural 21). This time (November 15, 2012), the request (repeated 5 times) was personal and targeted directly at yours truly:

Oh, yes, I am very sure! As specified in this eBook, the blackjack hands can be viewed as combinations or arrangements (the order of the elements counts; like in horse racing trifectas).

1) Let's take first the combinations. There are 52 cards in one deck of cards. There are 4 Aces and 16 face-cards and 10s. The blackjack (or natural) can occur only in the first 2 cards. We calculate first all combinations of 52 elements taken 2 at a time: C(52, 2) = (52 * 51) / 2 = 1326.

We combine now each of the 4 Aces with each of the 16 ten-valued cards: 4 * 16 = 64.

The probability to get a blackjack (natural): 64 / 1326 = .0483 = 4.83%.

2) Let's do now the calculations for arrangements. (The combinations are also considered boxed arrangements; i.e. the order of the elements does not count).

We calculate total arrangements for 52 cards taken 2 at a time: A(52, 2) = 52 * 51 = 2652.

In arrangements, the order of the cards is essential. Thus, King + Ace is distinct from Ace + King. Thus, total arrangements of 4 Aces and 16 ten-valued cards: 4 * 16 * 2 = 128.

The odds to get a blackjack (natural) as arrangement: 128 / 2652 = .0483 = 4.83%.

4.83% is equivalent to about 1 in 21 blackjack hands. (No wonder the game is called Twenty-one!)

Calculations for the Number of Cards Left in the Deck, Number of Decks

There were questions regarding the number of cards left in the deck, number of decks, number of players, even the position at the table.

1) The previous probability calculations were based on one deck of cards, at the beginning of the deck (no cards burnt). But we can easily calculate the blackjack (natural) odds for partial decks, provided that we know the number of remaining cards (total), Aces and Ten-Value cards.

Let's take the situation heads-up: One player against the dealer. Suppose that 12 cards were played, including 2 Tens; no Aces out. What is the new probability to get a natural blackjack?

Total cards remaining (R) = 52 - 12 = 40

Aces remaining in the deck (A): 4 - 0 = 4

Ten-Valued cards remaining (T): 16 - 2 = 14

Odds of a natural: (4 * 14) / C(40, 2) = 56 / 780 = 7.2%

(C represents the combination formula; e.g. combinations of 40 taken 2 at a time.)

The probability for a blackjack is higher than at the beginning of a full deck of cards. The odds are exactly the same for both Player and Dealer. But - the advantage goes to the Player! If the Player has the BJ and the Dealer doesn't, the Player is paid 150%. If the Dealer has the blackjack and the Player doesn't, the Player loses 100% of his initial bet!

This situation is valid only for one Player against casino. Also, this situation allows for a higher bet before the round starts. For multiple players, the situation becomes uncontrollable. Everybody at the table receives one card in succession, and then the second card. The bet cannot be increased during the dealing of the cards. Hint: try as much as you can to play heads-up against the Dealer!

The generalized formula is:

Probability of a blackjack: (A * T) / C(R, 2)

  • A = Aces in the deck
  • T = Tens in the deck
  • R = Remaining cards in the deck.

    2) How about multiple decks of cards? The calculations are not exactly linear because of the combination formula. For example, 2 decks, (104 cards):

    ~ the 2-deck case:

    C(52, 2) = 1326

    C(104, 2) = 5356 (4.04 times larger than total combinations for one deck.)

    8 (Aces) * 32 (Tens) = 256

    Odds of BJ for 2 decks = 256 / 5356 = 4.78% (a little lower than the one-deck case of 4.83%).

    ~ the 8-deck case, 416 total cards:

    C(52, 2) = 1326

    C(416, 2) = 86320 (65.1 times larger than total combinations for one deck.)

    32 (Aces) * 128 (Tens) = 4096

    Odds of BJ for 8 decks = 4096 / 86320 = 4.75% (a little lower than the two-deck situation and even lower than the one-deck case of 4.83%).

    There are NO significant differences regarding the number of decks. If we round the figures, the general odds to get a natural blackjack can be expressed as 4.8%.

    The advantage to the blackjack player after cards were played: Not nearly as significant as the one-deck situation.

    3) The position at the table is inconsequential for the blackjack player. Only heads-up and one deck of cards make a difference as far the improved odds for a natural are concerned.

    Probability software calculates blackjack natural odds for dealer and several players at BJ table.

    1.2. Probability, Odds for a Blackjack Playing through a Deck of Cards

    The probabilities in the first chapter were calculated for one trial. That is, the odds to get a blackjack in the first two cards. But what are the probabilities to get a natural 21 dealing an entire deck?

    1.2.A. Dealing 2-card hands until the deck is dealt entirely

    There are 52 cards in the deck. Total number of trials (2-card hands) is 52 / 2 = 26. SuperFormula probability software does the following calculation:

    1.2.B. Dealing 2-card hands in heads-up play until the deck is dealt entirely

    There are 52 cards in the deck. We are now in the simplest real-life situation: heads-up play. There is one player and the dealer in the game. We suppose an average of 6 cards dealt in one round. Total number of trials in this case is equivalent to the number of rounds played. 52 / 6 makes approximately 9 rounds per deck. SuperFormula does the following calculation:

    You, the player, can expect one blackjack every 3 decks in heads-up play.

    If the dealer shows an Ace face card and asks insurance the odds are against the player.

    2. House Edge on the Insurance Bet at Blackjack

    “Insurance, anyone?” you can hear the dealer when her face card is an Ace. Players can choose to insure their hands against a potential dealer's natural. The player is allowed to bet half of his initial bet. Is insurance a good side bet in blackjack? What are the odds? What is the house edge for insurance? As in the case of calculating the odds for a natural blackjack, the situation is fluid. The odds and therefore the house edge are proportionately dependent on the amount of 10-valued cards and total remaining cards in the deck.

    We can devise precise mathematical formulas based on the Tens remaining in the deck. We know for sure that the casino pays 2 to 1 for a successful insurance (i.e. the dealer does have Ten as her hole card).

    We start with the most easily manageable case: One deck of cards, one player, the very beginning of the game. There is a total of 16 Teens in the deck (10, J, Q, K). The dealer has dealt 2 cards to the player and one card to herself that we can see exactly — the face card being an Ace. Therefore, 52 – 3 = 49 cards remaining in the deck. There are 3 possible situations, axiomatic one:

    Believe it or not, the insurance can be a really sweet deal if there are multiple players at the blackjack table! Let's say, 5 players, the very beginning of the game. There is a total of 16 Teens in the deck (10, J, Q, K). The dealer has dealt 10 cards to the players and one card to herself that we can see exactly — the face card being an Ace. Therefore, 52 – (10 + 1) = 41 cards remaining in the deck. There are many more possible situations, some very different from the previous scenario:

    • Axiomatic one, buying (taking) insurance can be a favorable bet for all blackjack players, indeed. Of course, under special circumstances — if you see certain amounts of ten-valued cards on the table. The favorable situations are calculated by the formula above.
    But, then again, a dealer natural 21 occurs about 5%- of the time — the insurance alone won't turn the blackjack game entirely in your favor.

    If the dealer shows an Ace face card and asks insurance the odds are against the player.

    3. Calculate Blackjack Double-Down Hands

    Strictly-axiomatic colleague of mine, writing software leads me into new-ideas territory far more often than not. I discovered something new and intriguing while programming software to calculate the blackjack odds totally mathematically. By that I mean generating all possible elements and distinguishing the favorable elements. After all, the formula for probability is the rapport of favorable cases, F, over total possible cases, N: p = F/N.

    Up until yours truly wrote such software, total elements in blackjack (i.e. hands) were obtained via simulation. Problem with simulation is incomplete generation. According to by-now famed Ion Saliu's Probability Paradox, only some 63% of possible elements are generated in a simulation of N random cases.

    I tested my software a variable number of card decks and various deck compositions. I noticed that decks with lower proportions of ten-valued cards provided higher percentages of potential double-down hands. It is natural, of course, as Tens are the only cards that cannot contribute to a hand to possibly double down. However, the double-down hands provide the most advantageous situations for blackjack player. Indeed, it sounds like "heresy" to all followers of the cult or voodoo ritual of card counting!

    I rolled up my sleeves and performed comprehensive calculations of blackjack double-downs (2-card hands). The single deck is mostly covered, but the calculations can be extended to any number of decks.

    At the beginning of the deck (shoe): Total combinations of 52 cards taken 2 at a time is C(52, 2) = 1326 hands. Possible 2-card combinations that can be double-down hands:

    If the dealer shows an Ace face card and asks insurance the odds are against the player.

    4. Calculate Blackjack Pairs: Strict or Mixed Ten-Cards

    The odds-calculating software I mentioned above (section III) also counts all possible blackjack pairs. The software, however, considers pairs to be two cards of the same value. In other words, 10, J, Q, K are treated as the same rank (value). My software reports data as this fragment (single deck of cards):

    Mixed Pairs: All 10-Valued Cards Taken 2 at a Time

     Total STAND Hands (S):           462 = 34.84%
     Total STIFF Hands:               864 = 65.16%
    
     Total PAIRS (e.g. 2+2 or J+K):   174 = 13.12%
     
     DOUBLE DOWNS (Sums 9, 10, 11):   102 = 7.69%
     BJ Natural (10+A):               64 = 4.83%
    
     TOTAL 2-CARD BJ HANDS:           1326 
    

    Evidently, there are 13 ranks. Nine ranks (2 to 9 and Ace) consist of 4 cards each (in a single deck). Four ranks (the Tenners) consist of 16 cards. Total of mixed pairs is calculated by the combination formula for every rank. C(4, 2) = 6; 6 * 9 = 54 (for the non-10 cards). The Ten-ranks contribute: C(16, 2) = 120. Total mixed pairs: 54 + 120 = 174. Probability to get a mixed pair: 174 / 1326 = 13%.

    Strict Pairs: Only 10+10, J+J, Q+Q, K+K

    But for the purpose of splitting pairs, most casinos don't legitimize 10+J, or Q+K, or 10+Q, for example, as pairs. Only 10+10, J+J, Q+Q, K+K are accepted as pairs. Allow me to call them strict pairs, as opposed to the above mixed pairs.

    There are 13 ranks of 4 cards each. Each rank contributes C(4, 2) = 6 pairs. Total strict pairs: 13 * 6 = 78. Probability to get a mixed pair: 78 / 1326 = 5.9%. Total strict pairs = 78 2-card hands (5.9%, but...).

  • However, not all blackjack pairs should be split; e.g. 10+10 or 5+5 should not be split, but stood on or doubled down. Only around 3% of strict pairs should be legitimately split. See the optimal split pairs black jack strategy card.

    Take advantage of free blackjack software, gambling systems at this site and improve your chances.

    5. Free Blackjack Resources, Basic Strategy, Casino Gambling Systems

    Download your blackjack software to calculate odds or probabilities of natural 21 and insurance.

    Forums roulette systems, strategies, blackjack systems, casino gambling, lottery. Back to Forums Index        Socrates Home  Search  

    Exit the best site of software, systems, theories, mathematics of black jack BJ, twenty-one 21.